[bookmark: _GoBack]Programming in Java
-Exercise Sheet 1 – The basics-

1. Writing your first java program
1.1 Try this: Start Netbeans > Select File > New Project > Java Application > Rename the project HelloWorld(As below) > select finish:
[image:]
1.2 Try this: Now enter the following code(Note: NetBeans will have entered some of this code already for you. Ignore any greyed out text):
	
class HelloWorld {

	public static void main(String[] args) {
		System.out.println("Hello world!");
	}

}

Compile and run the program. It should output the text "Hello world!". Congratulations you've written your first java program!
Below breaks the program down to three parts. Explaining a little bit about how a basic java program works:
The program container
	
class HelloWorld {	}

After the class keyword the program name is declared. Within the curly brackets you place the program code that defines the HelloWorld class. Think of the program class as a blueprint.
The main method
	
public static void main(String[] args)

This code defines the starting point of the majority of java programs. The method "main" will contain the actual program instructions within its curly brackets. The method indicates the actions the class will take.

Public, static and void will be explained further later in the course. For now think of these keywords as special modifiers needed for the method main to be found and accessible.

The statement
	
System.out.println("Hello world!");

Statements must always end with a semi colon. They are program tasks contained within the method. A method can contain many statements but this is a single statement which outputs a line of text.
1.3 Try this: Change the text "Hello World!" to say the same in French (Use google translate). Re-compile, run and see what happens.

2. Creating a Variable
A variable in java is a useful container which a value can be stored in and used within the program. The stored value can then be changed (vary) throughout the program as it executes its instructions. A variable is created by writing a variable declaration in the program specifying the type of data that the variable can contain.
2.1 Try this: Enter the following code. This code will create a string(text based) variable called message and then modify it while outputting both values:
	
class FirstVariable {

	public static void main(String[] args) {
		String message = "Initial value";
		System.out.println(message);
		message = "Modified value";
		System.out.println(message);
	}

}

Compile and run the program. You should have two lines of text showing "Initial value" and "Modified value".
2.2 Try this: Change the text within the speech bubbles for "Initial value” and "Modified value". What happens?
2.3 Try this: Using the above code as a guide. Create another string variable, output it, modify it and output it again.

3. Data Types
The most frequently used data types when declaring a variable are shown below:
	Data type:
	Description:
	Example:

	char
	A single Unicode character
	'a'

	String
	Any number of Unicode characters
	"This is my String"

	Int
	An integer number, between -2.14 billion and + 2.14 billion
	1000

	float
	A floating-point number, with a decimal point
	3.14159265f

	boolean
	A logical value of either true or false
	true

Try this 3.1: Let’s create a program that creates, initializes and outputs variables of all the common data types. Create the following program:
	
class DataTypes {

	public static void main(String[] args) {

char letter = 'J';
String title ="HND Computing";
int number = 365;
float decimal = 92.6f;
boolean result = true;

System.out.println("Initial is " + letter);
System.out.println("Course is " + title);

System.out.println("Days are " + number);
System.out.println("Temperature is " + decimal);
System.out.println("Answer is " + result);

	}
}

When completed compile and run the program. You should get the output:
Intial is J
Course is Games Design
Days are 365
Temperature is 92.6
Answer is true

4. Creating constants
Constants allow you to declare a variable that cannot be changed. Using the modifier "final" keyword before a data type lets the program know that no further changes are allowed. Convention dictates that we use capital letters when declaring constants.
Try this 4.1: Create the following program:
	class Constants

{
	public static void main (String[] args)
	
	{
		final int TOUCHDOWN = 5;
		final int CONVERSION = 2;
		final int PENALTY = 3;
		final int DROPGOAL = 3;
	
		int td, con, pen, drp, total;
		
		
		td = 4 * TOUCHDOWN;
		con = 3 * CONVERSION;
		pen = 2 * PENALTY;
		drp = 1 * DROPGOAL;

		total = (td + con + pen + drp);

		System.out.println("Score: " + total);
			
	}	
}

Compile and run the program. You should get the output "Score: 35".

Try this 4.2: Look back at exercise 2.1. This program created a variable and then modified its value. Trying doing the same program with constants. What happens? Why do you think that is?

5. Comments

It is good practice when coding to leave comments to explain each section of your code. This helps yourself and other people to understand your code. If you'd like to display code over multiple lines use /* and */ writing your comments in-between. If you'd like to create a single line comment then start with //. Comments are completely ignored by the compiler.

5.1 Try this: Add comments to your constants program helping to explain the code. It should look something like below.

	/*
 	This program demonstrates constant variables.
 */

class Constants

{
	public static void main (String[] args)
	
	{
		// Constant score values.
		final int TOUCHDOWN = 5;
		final int CONVERSION = 2;
		final int PENALTY = 3;
		final int DROPGOAL = 3;
		
		// Calculate the points scored.
		int td, con, pen, drp, total;
		
		
		td = 4 * TOUCHDOWN;
		con = 3 * CONVERSION;
		pen = 2 * PENALTY;
		drp = 1 * DROPGOAL;

		total = (td + con + pen + drp);
		
		// Output of the calculated total
		System.out.println("Score: " + total);
			
	}	
}

6. Exercises

A. Using Variables
Write a program that stores your name and year you finish your course into variables, and displays their values on the screen.
Make sure that you use two variables, and that the variable that holds your name is the best type for such a variable, and that the variable that holds the year is the best type for that variable.
Also make sure that your variable names are good: the name of a variable should always relate to its contents.
Your program should NOT look like this:

System.out.println("My name is Jeff and my course finishes in 2017");

B. Using Variables 2
Write a program that creates three variables: an int, a float, and a String.
Put the value 413 into the first variable, the value 3.75 into the second, and the value "Programming in Java" into the third. It does not matter what you call the variables... this time.
Then, display the values of these three variables on the screen, one per line.
The variables should be added to the following sentences (Variables to added where … present):
This is room # …
This lesson lasts … hours
I am learning a bit about …
Your program SHOULD NOT look like this:
 System.out.println("This is room # 413");
 System.out.println("This lesson lasts 3.75 hours");
 System.out.println("I am learning a bit about programming in Java");
You must use three variables. Your program will probably have nine lines of code inside the curly braces of main().

C. Gallons to litres

Although the preceding sample programs illustrate several important features of the Java language, they are not very useful.

In this exercise, we will create a program that converts gallons to litres. You will need to declare two float variables. One will hold the number of the gallons, and the second will hold the number of litres after the conversion. There are 4.54609 litres in a gallon. So to convert gallons to litres, the gallon value is multiplied (using the * symbol) by 4.54609. The program should display both the number of gallons and the equivalent number of litres.

Name the GalToLit.java

Set the program to convert 10 gallons to litres.
2 | Page	James Tedder

image1.png

