HND in Computing
Unit 41 - Programming in Java
Sheet 3 - Operations

Note: Use the operations reference sheet while completing these exercises
1. Arithmetic
Arithmetic operators(Symbols that represent specific actions) in Java work much like they do in mathematics, producing a value from one or more operands(Objects that are manipulated). So for example 8 * 2 returns a value of 16.
The increment ++ and decrement operator -- modify a single operand by 1. So 2++ returns the value of 3 and 3-- returns the value of 2.
Subtraction, multiplication and division perform as you would expect.
Addition depends on whether it's being used on two numbered operands or within a String. When used within a String it connects two string values together. For example "Java" + "Arithmetic" returns "Java Arithmetic".
Modulus % operator divides the first operand by the second operand and returns the remainder of the operation. For example 44 % 5 returns 4, five divides into 44 eight times leaving 4 remaining.
1.1 Try this: Create a package called Operations and a class called Arithmetic. Enter the following code to produce some simple mathematic calculations:
	public class Arithmetic {
	public static void main(String[] args){
		int num = 200;
		int factor = 40;
		int sum = 0;
		
		sum = num + factor;
		System.out.println("Addition sum:" + sum);
		sum = num - factor;
		System.out.println("Subtraction sum: " + sum);
		
		sum = num * factor;
		System.out.println("Multiplication sum: " + sum);
		sum = num / factor;
		System.out.println("Division sum: " + sum);
		
	}

}

The code should produce:
Addition sum:240
Subtraction sum: 160
Multiplication sum: 8000
Division sum: 5

1.2 Try this: Add or edit the code with some of the other operators and see what happens

2. Assigning values
Assignment operators are used to assign the result of an expression. Every assignment operator except for = is used as shorthand for longer equivalent expression.
Keep in mind that in java the = operator does not mean "equals". It is used to assign, == is the equality operator. So a = b for example assigns the variable value of b into the variable a.
2.1 Try this: Create a new class called "AssigningValues" within your operations package.
	public class AssigningValues {
	public static void main(String[] args) {
		String txt = "Fantastic ";
		String lang = "Java";
		txt += lang; //txt = txt + lang;
 // Joins two strings together to create "Fantastic Java"

		System.out.println("Add assign String: " + txt);
		
		int sum = 10;
		int num = 20;
		sum += num;
		System.out.println("Add & assign Intergers: " + sum);
		
		int factor = 5;
		sum *= factor;
		System.out.println("Multiplication sum: " + sum);
		
		sum /= factor; // Assign result (150 / 5 = 30)
		System.out.println("Division sum: " + sum);
		
		
	}
}

3. Comparing values
Comparison operators are used to compare two values and return a boolean value(true or false).
3.1 Try this: Create a new class called "ComparingValues" within your operations package.
	
public class ComparingValues {
	public static void main (String[] args){
		String txt = "Fantastic";
		String lang = "Java";
		boolean state = (txt == lang); //Are txt and lang equal
		System.out.println("String Equality Test: " + state);
		
		state = (txt != lang);
		System.out.println("String InEquality Test: " + state);
		
		int dozen = 12;
		int score = 20;
		state = (dozen > score);
		System.out.println("Greater than test: " + state);
		
		state = (dozen < score);
		System.out.println("Less than test: " + state);
		
		
		
		
	}
}

Your code should return the following:
String Equality Test: false
String InEquality Test: true
Greater than test: false
Less than test: true

4 Assessing logic
Logical operators are used to combine multiple expressions that each return a boolean value(true or false) into one complex expression that returns a single boolean value
The logical && (AND) operator will evaluate two operands and return true only if both operands are true.
The logical || (OR) will evaluate two operands and return true if either of the operands is true.
The logical ! (NOT) is used to return the inverse boolean value of a operand. Thus reversing true to false and false to true.
4.1 Try this: Create a new class called "Assessinglogic” within your operations package. Enter the following code to test out the logical operators.

	
public class AssessingLogic {
	public static void main(String[] args){
	
	Boolean yes = true;
	Boolean no = false;
	
	System.out.println("Both YesYes true: "+ (yes && yes));
	System.out.println("Both YesNo true: " + (yes && no));
	
	System.out.println("Either YesYes true: " + (yes || yes));
	System.out.println("Either YesYes true: " + (yes || no));
	System.out.println("Either NoNo True:" + (no || no));
	
	System.out.println("Original Yes value: " + yes);
	System.out.println("Inverse Yes value: " + !yes);
	}
}

5. Conditions
The conditional operators syntax is as follows:
(boolean-expressions) ? if-true-return-this : if-false-return-this;
This operator evaluate an expression for a true or false value then returns one of two given operands depending on the result of the evaluation. Below is an example:
max = (a > b) ? a : b;
(a > b) ? a : b; is an expression which returns one of two values, a or b. The condition, (a > b), is tested. If it is true the first value, a, is returned. If it is false, the second value, b, is returned. Whichever value is returned is dependent on the conditional test, a > b. The condition can be any expression which returns a boolean value.
4.1 Try this: Create a new class called "ExaminingConditions" within your operations package. Enter the following code to test out the logical operators.
	
public class ExaminingConditions {
	public static void main(String[] args){
		int num1 = 467;
		int num2 = 988;
		
		String result;
		
		result = ((num1 % 2) == 0) ? "even " : "odd";
		System.out.println(num1 + " is " + result);
		
[bookmark: _GoBack]		result = ((num2 % 2) == 0) ? "even" : " Odd ";
		System.out.println(num2 + " is " + result);
		
}
}

6. Precedence
Operator precedence defines the order in which various operators are evaluated. (In fact, you may remember "order of operations" from secondary school algebra.)As an example, let's say we have the following line of Java code: int x = 4 + 3 * 5;The variable x gets the value of evaluating the expression 4 + 3 * 5. There are a couple of ways to evaluate that expression, though: We can either perform the addition first or perform the multiplication first. By choosing which operation to perform first, we are actually choosing between two different expressions:
1. (4 + 3) * 5 == 35
2. 4 + (3 * 5) == 19
In the absence of parentheses, which choice is appropriate? Programming languages answer this question by defining precedence levels for each operator, indicating which is to be performed first. In the case of Java, multiplication takes precedence over addition;therefore, x will get the value 19.For arithmetic expressions, multiplication and division are evaluated before addition and subtraction, just like in mathematics. Of course, just as you might in a math class, you can always parenthesize Java expressions to indicate which are to be evaluated first.
6.1 Try this: Create a new class called "Precedence” within your operations package. Enter the following code to test out the logical operators.
	
public class Precedence {
	public static void main(String[] args){
		int sum = 32 - 8 + 16 * 2; //16 x 2 = 32 + 24 = 56
		System.out.println("Default order: " + sum);
		
		sum = (32 -8 + 16) * 2; //24+16 = 40 x 2 = 80
		System.out.println("Specified order: " + sum);
		
		sum = (32 - (8 + 16)) * 2; //32 - 24 = 8, * 2 = 16
		System.out.println("Nested specific order: " + sum);
		
		
	}
}

7. Escape Sequences
A character preceded by a backslash (\) is an escape sequence and has special meaning to the compiler.
When an escape sequence is encountered in a print statement, the compiler interprets it accordingly. For example, if you want to put quotes within quotes you must use the escape sequence, \", on the interior quotes. To print the sentence
She said "Hello!" to me.
you would write
System.out.println("She said \"Hello!\" to me.");

7.1 Try this: Create a new class called "EscapeSequences" within your operations package. Enter the following code to test out the logical operators.
	
public class EscapeSequences {
	public static void main(String[] args){
		String header = "\n\tNEW YORK 3-DAY FORECAST:\n";
		header += "\n\tDAY\t\tHigh\tLow\tConditions\n";
		header += "\t---\t\t----\t---\t----------\n";
		
		String forecast = "\tSunday\t\t68F\t48F\tSunny\n";
		forecast += "\tMonday\t\t69F\t57F\tSunny\n";
		forecast += "\tTuesdays\t71F\t50F\tCloudy\n";
		
		System.out.print(header + forecast);
	}
}

The code should produce the following:
	NEW YORK 3-DAY FORECAST:

	DAY		High	Low	Conditions
	---		----	---	----------
	Sunday		68F	48F	Sunny
	Monday		69F	57F	Sunny
	Tuesdays	71F	50F	Cloudy

Exercises

A. Create a program that prints the following and includes the total to the sum(…) by performing arithmetic calculations on a single variable:
1 + 2 = …
3 - 1 = …
2 * 2 = …
4 / 2 = …
2 + 8 = …
10 % 7 = …

The outcome of all the answers to the sums must be done using one variable which is modified as the program goes through the code. You could give the variable the identifier “result”.

B. Using escape sequences create a nicely formatted timetable for your weekly classes at college. Refer to your operations reference sheet and exercise 7 for help.
6 | Page	James Tedder

