
Unit 41 - Programming in Java
Inheritance, polymorphism and encapsulation

[bookmark: _GoBack]1. Inheritance
Inheritance can be defined as the process where one class acquires the properties, methods and fields of another. With the use of inheritance the information is made manageable in a hierarchical order. The class which inherits the properties of the other is known as subclass, derivedclass, childclass and the class whose properties are inherited are known as superclass, baseclass, parentclass.
1.1 Try this: Below given is an example demonstrating Java inheritance. In this example you can observe two classes namely Calculation and My_Calculation. Using extends keyword the My_Calculation inherits the methods addition and Subtraction of Calculation class.
	class Calculation{
 int z;
	
 public void addition(int x, int y){
 z = x+y;
 System.out.println("The sum of the given numbers:"+z);
 }
	
 public void Substraction(int x,int y){
 z = x-y;
 System.out.println("The difference between the given numbers:"+z);
 }

}

public class Inheritance extends Calculation{

 public void multiplication(int x, int y){
 z = x*y;
 System.out.println("The product of the given numbers:"+z);
 }
	
 public static void main(String args[]){
 int a = 20, b = 10;
 Inheritance demo = new Inheritance();
 demo.addition(a, b);
 demo.Substraction(a, b);
 demo.multiplication(a, b);
 }

}

When completed compile and run the program. You should get the output:
The sum of the given numbers:30
The difference between the given numbers:10
The product of the given numbers:200
2. Polymorphism
Polymorphism is the capability of a method to do different things and take on many forms based on the object that it is acting upon. In other words, polymorphism allows you define one interface (or class) and have multiple implementations.
Any Java object that can pass more than one IS-A test is considered to be polymorphic. For example if we had a class called “Animal” and let “Cat” be a subclass of Animal. So, any cat IS animal. Here, Cat satisfies the IS-A relationship for its own type as well as its super class Animal.
Static polymorphism in Java is achieved by method overloading. This decides which method to execute during compile time. (In the same class)
Dynamic polymorphism in Java is achieved by method overriding. This decides which method to execute during compile time. (In a different classes)
Static polymorphism
In Java, static polymorphism is achieved through method overloading. Method overloading means there are several methods present in a class having the same name but different types/order/number of parameters.
2.1 Try this: Create the following program. Notice two methods called mul() in the class Mltply. The same method identifier is used twice but for two different purposes (Polymorphism!). This an example method overloading.
	package polymorphism;
class Mltply {
 void mul(int a, int b) {
 System.out.println("Sum of two=" + (a * b));
 }

 void mul(int a, int b, int c) {
 System.out.println("Sum of three=" + (a * b * c));
 }
}
class Polymorphism {
 public static void main(String args[]) {
 Mltply m = new Mltply();
 m.mul(6, 10);
 m.mul(10, 6, 5);
 }
}

Dynamic Polymorphism:
Suppose a sub class (A class using the extends keyword) overrides a particular method of the super class(The class that is being extended). Let’s say, in the program we create an object of the subclass and assign it to the super class reference. Now, if we call the overridden method on the super class reference then the sub class version of the method will be called. We call this method overriding.
2.2 Try this: Create the following two separate java class files. Notice the use of the extends keyword and inheritance between classes. Also notice how we change the value of the sound() method(Polymorphism!). This is also known as Method overriding.
Animal.java
	public class Animal{
 public void sound(){
 System.out.println("Animal is making a sound");
 }
}

Horse.java
	class Horse extends Animal{
 @Override //Use this before overriding methods for easy code reading and forced compiler checking.
 public void sound(){
 System.out.println("Neigh");
 }
 public static void main(String args[]){
 	Animal obj = new Horse();
 	obj.sound();
 }
}

3. Encapsulation
Encapsulation in Java is a mechanism of wrapping the data variables and code acting on the data methods together as a single unit. In encapsulation the variables of a class will be hidden from other classes, and can be accessed only through the methods of their current class, therefore it is also known as data hiding. To achieve encapsulation in Java we declare the variables of a class as private. Provide public setter and getter methods to modify and view the variables values.
3.1 Try this: Below given is an example that demonstrates how to achieve Encapsulation in Java:
Create a new class(EncapTest) using the example code:
	

public class EncapTest{

 private String name;
 private String idNum;
 private int age;

 public int getAge(){
 return age;
 }

 public String getName(){
 return name;
 }

 public String getIdNum(){
 return idNum;
 }

 public void setAge(int newAge){
 age = newAge;
 }

 public void setName(String newName){
 name = newName;
 }

 public void setIdNum(String newId){
 idNum = newId;
 }
}

The public setXXX() and getXXX() methods are the access points of the instance variables of the EncapTest class. Normally, these methods are referred as getters and setters. Therefore any class that wants to access the variables should access them through these getters and setters.

3.2 Try this: Create a new class(RunEncap) as part of your current project. This class contains the main method using the example code:
	
public class RunEncap{

 public static void main(String args[]){
 EncapTest encap = new EncapTest();
 encap.setName("James");
 encap.setAge(20);
 encap.setIdNum("12343ms");

 System.out.print("Name : " + encap.getName() + " Age : " + encap.getAge());
 }
}

You should get the following output:

Name : James Age : 20

Benefits of Encapsulation:
· The fields of a class can be made read-only or write-only.
· A class can have total control over what is stored in its fields.
· The users of a class do not know how the class stores its data.
· A class can change the data type of a field and users of the class do not need to change any of their code
5 | Page	James Tedder

