Unit 41 - Programming in Java
Objects in Java
In this sheet we will look at some common patterns Java uses when creating and working with objects
We will create objects of our own, and each one will contain a single method. Notice the use of the void keyword because the methods have no return value. When creating objects the static keyword (This specifies that the method is not to be used as an object) is not used so we will need to create objects of our methods.
1.1 Try this: Type up the following code and get it to compile. Create and save it as OldMacDonald.java. The code creates objects of 3 classes (Cow, Pig & Duck) and allows us to call their methods.
	1 class Cow {
2 public void moo() {
3 System.out.println("Cow says moo.");
4 }
5 }
6
7 class Pig {
8 public void oink() {
9 System.out.println("Pig says oink.");
10 }
11 }
12
13 class Duck {
14 public void quack() {
15 System.out.println("Duck says quack.");
16 }
17 }
18
19 public class OldMacDonald {
20 public static void main(String[] args) {
21
22 Cow maudine = new Cow();
23 Cow pauline = new Cow();
24 maudine.moo();
25 pauline.moo();
26
27 Pig snowball = new Pig();
28 snowball.oink();
29 snowball.oink();
30
31 Duck ferdinand = new Duck();
32 ferdinand.quack();
33 }
34 }

When completed compile and run the program. You should get the output:
Cow says moo.
Cow says moo.
Pig says oink.
Pig says oink.
Duck says quack.
Lines 1-5 define an object called Cow. The definition of the Cow class includes the definition of a method called moo(). Note that on line 2 it says “public void moo()”, not “public static void moo()”. Except for main(), you won’t be using the keyword static very much.
Lines 7 through 11 define a class named Pig, containing an oink() method. And lines 13 through 17 define a class named Duck, which contains a quack() method.
Lines 19 to 34 define the class that matches the name of the Java file. Notice that in this file, the class OldMacDonald has the keyword public in front, but none of the other classes do. In Java, each file may only have one public class in it, and the name of that public class has to match the name of the file.
This class contains the main() method in it, which is where the Java Virtual Machine begins when executing a file. The OldMacDonald class is listed after the other classes in the file, but it would work the same if the classes were in a different order.
When we run this program, execution begins on the first line of the main() method. Any other code in the file will only execute if it gets called from inside main().
Lines 22 and 23 instantiate two Cow objects. Lines 24 and 25 call the moo() method on behalf of each object. This causes execution to jump up to line 3, run the println() statement inside the method, and return back down below.
On line 27 we create an instance of a Pig object and then call its oink() method twice. And on line 31 we instantiate a Duck object and call its only method on the next line.
Then on line 33 we hit the close curly brace of the main() method, which typically means the end of the program.
Do you see? Defining your own objects isn’t so hard, and calling their methods is pretty easy, too, once you’ve instantiated an object.
1.2 Try this: Try moving the entire definition of the Duck class below the OldMacDonaldclass. Does the code still compile and work? Answer in a comment.

1.3 Try this: Inside the main() method, instantiate another object and call its method. (It doesn’t matter which of the three objects; just pick one.)

Defining Objects in Separate Files
In the previous exercise, we defined three objects (actually four if you count the one that had main() in it), but they were all implemented in the same file. This is not typically how things are done. Usually Java puts the implementation for each class into its own file, and then there’s another file that just holds the main() method that instantiates the objects and makes them do their thing. This class is often called the “driver” class, so usually you would put the word “Driver” in the name of the file.
[bookmark: _GoBack]Try this: Type up the following code, and put each class into its own file, named as shown. Save them all in the same folder/package.
OldMacCow.java
	1 public class OldMacCow {
2 public void moo() {
3 System.out.println("Cow still says moo.");
4 }
5 }

After you’ve typed in and saved OldMacCow.java, you should probably try to compile it to make sure you haven’t made any mistakes before you move on.

OldMacDuck.java
	1 public class OldMacDuck {
2 public void quack() {
3 System.out.println("Duck still says quack.");
4 }
5 }

Did you accidentally try to run this file or the first one? Neither one contains a main() method, and so executing it by itself won’t work.

OldMacDriver.java
	1 public class OldMacDriver {
2 public static void main(String[] args) {
3 OldMacCow maudine = new OldMacCow();
4 OldMacCow pauline = new OldMacCow();
5 maudine.moo();
6 pauline.moo();
7
8 OldMacDuck ferdinand = new OldMacDuck();
9 ferdinand.quack();
10 }
11 }

You should have three files with a class in each. Run OldMacDriver.java the file containing the Main() method. As long as the files are all in the same folder Java will go hunting for the missing classes in Main().

Your output should be:

Cow still says moo.
Cow still says moo.
Duck still says quack.

Fields in an Object
So far we have only looked at methods inside of objects. But most objects have variables inside them, too, called “fields” (or sometimes “instance variables”).
This program will illustrate accessing fields in an object.
2.1 Try this: Type up this code and save it in its own file, named as indicated.
TVActor.java
	1 public class TVActor {
2 String name;
3 String role;
4 }

Then type up this one and save it in the same folder as the first file.
TVActorDriver.java
	1 public class TVActorDriver {
 2 public static void main(String[] args) {
 3 TVActor a = new TVActor();
 4 a.name = "Thomas Middleditch";
 5 a.role = "Richard Hendricks";
 6
 7 TVActor b = new TVActor();
 8 b.name = "Martin Starr";
 9 b.role = "Bertram Gilfoyle";
10
11 TVActor c = new TVActor();
12 c.name = "Kumail Nanjiani";
13 c.role = "Dinesh Chugtai";
14
15 System.out.println(a.name + " played " + a.role);
16 System.out.println(b.name + " played " + b.role);
17 System.out.println(c.name + " played " + c.role);
18 }
19 }

Remember that you only need to compile and run the one file containing the main() method.
Your output should be:
	Thomas Middleditch played Richard Hendricks
Martin Starr played Bertram Gilfoyle
Kumail Nanjiani played Dinesh Chugtai

So the class TVActor contains two instance variables, and they are both Strings. The first variable is called name and the second is called role.
They are called “instance” variables because each instance (copy) of the object gets its own copies of the variables.
That is, just after line 11 is over, there are three instances of the TVActor class created. public class TVActor makes a pattern or recipe or blueprint of sorts, and then line 3 actually sews together the clothing or cooks the recipe or builds the structure when it instantiates the object.
And so the instance named a has a copy of the name variable and a copy of the role variable. We can put values into a’s copies of these variables as shown on lines 4 and 5, though we’ll see later in the book that this is considered bad style.
Line 7 creates a second instance of the class, with its own copies of the instance variables.
And line 11 creates a third instance of the class, which also has its own copies of the variables. So by line 14, there are at least nine objects floating around in memory: three TVActor objects and six String objects (two per TVActor).
2.2 Try this: Add a third instance variable to the TVActor class, either a String, an int, or a double. Name it something suitable, then add code to the driver class to put values for each instance of the TVActor object.
Also add code to print out the new field.

5

