Unit 41 - Programming in Java
Methods/Functions in Java
1. Methods – Introduction
You group Java operations (code) inside Java methods. Java methods must be located inside a Java class.
Java methods are similar to what is called functions or procedures in other programming languages (e.g. Pascal or JavaScript). A method is a group of Java statements that perform some operation on some data, and may or may not return a result. Up till now we have only used one method main().
The void keyword allows us to create methods which do not return a value. A call to a void method must be a statement i.e. elephant(); The static keyword means we do not need to create objects of these methods before calling them (More on this in the next sheet).
Try this 1.1: The below code ask the user which animal the user would like to know more about. They choose a number depending on which one. This will then call the corresponding method containing the information. Complete the code so that Giraffe and Snake methods are called correctly.

	package functions;
import java.util.Scanner;
public class Functions {

 public static void main(String[] args) {
		Scanner kb = new Scanner(System.in);
		int choice;
		
		System.out.println("1. Butterfly ");
		System.out.println("2. Elephant ");
		System.out.println("3. Giraffe");
		System.out.println("4. Snake ");
		
		System.out.print("\nWhich animal would you like to know more about? ");
		choice = kb.nextInt();
		System.out.println();
		
		if (choice == 1)
		{
			butterfly();
		}
		else if (choice == 2)
		{
			elephant();
		}
		else if (choice == 3)
		{
[bookmark: _GoBack]			 // * write code here to call the function named 'Giraffe'
		}
		else if (choice == 4)
		{
			 // * write code here to call the function named 'snake'
		}
		else
		{
			System.out.println("Sorry, that wasn't one of the choices.");
		}

		System.out.println("\nGoodbye!");
 }

 	public static void butterfly()
	{
		System.out.println("Butterflies are insects in the macrolepidopteran clade Rhopalocera from the order Lepidoptera, which also includes moths.");
	}
	
	public static void elephant()
	{
		System.out.println("Elephants are large mammals of the family Elephantidae and the order Proboscidea.");
	}
	
	public static void giraffe()
	{
		System.out.println("The giraffe is a genus of African even-toed ungulate mammals, the tallest living terrestrial animals and the largest ruminants.");
	}
	
	public static void snake()
	{
		System.out.println("Snakes are elongated, legless, carnivorous reptiles of the suborder Serpentes.");
	}

}

Try this 1.2: Change the code in the if statement for choice 1 so that it calls the 'butterfly' function twice instead of just once. What happens now when you run the program and choose option 1? (Answer in a comment right underneath where you added the extra function call.)

2. Returning Methods
The void keyword allows us to create methods which do not return a value. We would use the keyword return within the method if the method is supposed to return a value.
This example below shows the return keyword being used. Note that the keyword void is not used.Method name

[image: A Java int method]return type

The method's return type goes first, which is an int type in the code above. After the method type, you need a space followed by the name of your method. We've called the one above total.
Sometimes you don't want Java to return anything at all. Look at the code from the previous section. Our animal methods just need to get on with their jobs, and do not need to return anything to you.

A method that doesn't return any value at all can be set up with the word void. In which case, it doesn't need the return keyword.

Here's a method that doesn't return a value:

[image: A void method with no parameters]
All the method above does is to print some text. It can just get on with its job, so we've set it as a void method. There's no return value.
Try this 2.1: Create the following simple example to demonstrate one use of the return statement above:
	class SquareMain {
 public static void main(String[] args) {
 int result;
 result = square();
 System.out.println("Squared value of 10 is: " + result);
 }

 public static int square() {
 // return statement
 return 10 * 10;
 }

}

Return values are used for a variety of purposes in programming. In some cases, the return value contains the outcome of some calculation. In other cases, the return value may simply indicate success or failure. In others, it may contain a status code. Whatever the purpose, using method return values is an integral part of Java programming.

3. Parameters
It is possible to pass one or more values to a method when the method is called. A value
passed to a method is called an argument. Inside the method, the variable that receives the argument is called a parameter. Parameters are declared inside the parentheses that follow the method’s name. The parameter declaration syntax is the same as that used for variables. A parameter is within the scope of its method, and aside from its special task of receiving an argument, it acts like any other local variable.

Try this 3.1: Create the following program which takes two parameters from the main() method and passes them to the minFunction
	package minimum;
public class minimum {
 public static void main(String[] args) {Values to be passed to method minFunction()

 int a = 11;
 int b = 6;
 int c = minFunction(a, b);
 System.out.println("Minimum Value = " + c);
 }

 /** returns the minimum of two numbers */
 public static int minFunction(int n1, int n2) {
 int min;
 if (n1 > n2)
 min = n2;
 elseArguments

 min = n1;

 return min;
 }
}

Try this 3.2: A method can have more than one parameter. Simply declare each parameter, separating one from the next with a comma. For example, the Factor class below defines a method called isFactor() that determines whether the first parameter is a factor of the second. Notice the use of the return keyword and also the else keyword. Also notice that the isFactor() method is declared as a booleon but receives two int arguments. For the first time we also create two classes within our code although this is not strictly necessary for this program (More on this later). Create the following project called Factor:

	package factor;
class Factor {
 boolean isFactor(int a, int b) {
 if((b % a) == 0) return true;
 else return false;
 }
}
class IsFact {
 public static void main(String args[]) {
 Factor x = new Factor();

 if(x.isFactor(2, 20)) System.out.println("2 is factor");
 if(x.isFactor(3, 20)) System.out.println("this won't be displayed");
 Values are passed to the isFactor() method

 }
}

Notice that when isFactor() is called, the arguments are also separated by commas. When using multiple parameters, each parameter specifies its own type, which can differ from the others. For example, this is perfectly valid:

	Int myMethod (int a, float b, string c){
//clever stuff here
}

image1.gif

image2.gif

