HND in Computing
Programming in Java
-Sheet 4-

1. If Statements
Using the If keyword If statements perform a conditional test to evaluate an expression for a boolean value. A statement following the expression will only be executed when the evaluation is true. Otherwise the program proceeds onto the next line of code. Its syntax looks as follows:
if (test-expression) code-to-be-executed-when-true;
The boolean && AND operator can be used in a If statement using the following syntax:
if ((test-condition-1) && (test-condition-2)) execute-this-code;
Along with the boolean || OR operator:
if ((test-condition-1) || (test-condition-2)) execute-this-code;

1.1 Try this: Create a new class using the example code:
	
public class If {
	public static void main(String[] args){
		if (5 > 1) System.out.println("Five is greater than one");
		
		if (2 < 4)
			System.out.println("Two is less than four.");
			System.out.println("Test succeeded. ");
			
		int num = 8;
			
		if (((num > 5) && (num < 10)) || (num == 12)) //More than 5, less than 10 or no.12
			System.out.println("Number is 6-9 inclusive, or 12");
}
}

When completed compile and run the program. You should get the output:
Five is greater than one
Two is less than four.
Test succeeded.
Number is 6-9 inclusive, or 12

2. if else statements
The else keyword is used in conjunction with the if keyword to create if else statements that provide alternative branches for a program to pursue – according to the evaluation of a tested expression. In its simplest form this merely nominates an alternative statement for execution when the test fails.
The syntax is as follows:
if (test-expression)
	code-to-be-executed-when-true;
else
	code-to-be-executed-when-false;
2.1 Try this: Create a new class using the example code:
	

public class Else {
	public static void main(String[] args){
		int hrs = 15;
		
		if (hrs < 13)
		{
			
			System.out.println("Good morning: " + hrs);
		}
		else if (hrs < 18)
			System.out.println("Good afternoon: " + hrs);
		else
			System.out.println("Good evening: " + hrs);
		
		
	}

}

When completed compile and run the program. You should get the output:
Good afternoon: 15

3. Switch Statements
Unlike if and if-else statements, the switch statement can have a number of possible execution paths. The switch statement works in an unusual way. It takes a specified variable then seeks to match its assigned value from among a number of case options. Statements associated with the option whose value matches are then executed.
Optionally a switch statement can include a final option using the default to specify statements to execute when no case options match the value assigned to the specified value. The syntax is as follows:
switch (test-variable)
{
	case value-1 : code-to-be-executed-when-true ; break;
	case value-2 : code-to-be-executed-when-true ; break;
	case value-3 : code-to-be-executed-when-true ; break;
	default : code-to-be-executed-when-false;
}

3.1 Create a new class using the example code:
	

public class Switching {
	public static void main(String[] args){
		int month = 2, year = 2016, num = 31;
		switch (month)
		{
		case 4 : case 6 : case 9 : case 11 : num = 30 ; break ;
		
		case 2 : num = (year % 4 == 0) ? 29 :28 ;
		
		
		}
[bookmark: _GoBack]System.out.println(month+"/"+year+": "+num+"days");
}
}

When completed compile and run the program. You should get the output:
2/2016: 29days

4. For Loops
The for statement provides a compact way to iterate over a range of values. Programmers often refer to it as the "for loop" because of the way in which it repeatedly loops until a particular condition is satisfied. The general form of the for statement can be expressed as follows:
for (initializer ; test-expression ; updater)
{
	statements-to-be-executed-on-each-iteration;
}
When using this version of the for statement, keep in mind that:
· The initialization expression initializes the loop; it's executed once, as the loop begins.
· When the test-expression evaluates to false, the loop terminates.
· The updater expression is invoked after each iteration through the loop; it is perfectly acceptable for this expression to increment or decrement a value.
Every loop must, at some point, enable the test expression to return false – otherwise an infinite loop is created that will relentlessly execute its statements. Commonly the test expression will evaluate the current value of the counter variable to perform a specified number of iterations.
4.1 Create a new class using the example code:
	public class ForLoop {
	public static void main(String[] args){
		int num = 0;
		for (int i = 1; i<4; i++)
		{
			System.out.println("Outer Loop i=" + i);
			
			for (int j = 1; j < 4; j++)
			{
					System.out.print("\tInner Loop j=" + j);
					System.out.println("\t\tTotal num="+(++num));
			}
		}	

		
		
		
	}
}

When completed compile and run the program. You should get the output:
Outer Loop i=1
	Inner Loop j=1		Total num=1
	Inner Loop j=2		Total num=2
	Inner Loop j=3		Total num=3
Outer Loop i=2
	Inner Loop j=1		Total num=4
	Inner Loop j=2		Total num=5
	Inner Loop j=3		Total num=6
Outer Loop i=3
	Inner Loop j=1		Total num=7
	Inner Loop j=2		Total num=8
	Inner Loop j=3		Total num=9

5. While loops

The while statement continually executes a block of statements while a particular condition is true. Its syntax can be expressed as:

Syntax:

while (test-expression)
{
	statements-to-be-executed-on-each-iteration;
}

The while statement evaluates a test-expression, which must return a boolean value. If the expression evaluates to true, the while statement executes the statement(s) in the while block. The while statement continues testing the expression and executing its block until the expression evaluates to false.

5.1 Create a new class using the example code:

	
public class While {
	public static void main(String[] args){
		int num = 100;
		
		while (num > 0)
			System.out.println("While countdown: " + num);
	}
}

When completed compile and run the program. You should get the output:
While countdown: 100
While countdown: 100
While countdown: 100
While countdown: 100
While countdown: 100
While countdown: 100
6. Do-while loops

The Java programming language also provides a do-while statement, which can be expressed as follows:

do
{
	statements-to-be-executed-on-each-iteration;
}
while (test-expression);

The difference between do-while and while is that do-while evaluates its expression at the bottom of the loop instead of the top. Therefore, the statements within the do block are always executed at least once.

6.1 Create a new class using the example code:

	
public class DoWhile {
	public static void main(String[] args){

			int num = 0 ;

			do
			{
				System.out.println("DoWhile Countup: " + num);	
				num += 10;
			}
			while (num <= 100);		
		}
	}

When completed, compile and run the program. You should get the output:
DoWhile Countup: 0
DoWhile Countup: 10
DoWhile Countup: 20
DoWhile Countup: 30
DoWhile Countup: 40
DoWhile Countup: 50
DoWhile Countup: 60
DoWhile Countup: 70
DoWhile Countup: 80
DoWhile Countup: 90
DoWhile Countup: 100

7. Breaking out of loops(Jump statements)

This section will introduce the break, continue and return keywords and their uses.

The break keyword can be used to prematurely terminate a loop when a specified condition is met. The break statement is situated inside the loop statement block and is proceeded by a test expression. When the test returns true the loop ends immediately and the program proceeds onto the next task. For example in a nested loop it proceeds to the next iteration of its outer loop.

7.1 Create a new project using the example code. This shows the use of the break keyword. Note how the loop finishes early when the nested If loops condition is met:
	class BreakLoopDemo
{
 public static void main(String args[])
 {
 // Initially loop is set to run from 0-9
 for (int i = 0; i < 10; i++)
 {
 // terminate loop when i is 5.
 if (i == 5)
 break;

 System.out.println("i: " + i);
 }
 System.out.println("Loop complete.");
 }
}

Output:
i: 0
i: 1
i: 2
i: 3
i: 4
Loop complete.

The continue keyword can sometimes be useful to force an early iteration of a loop. That is, you might want to continue running the loop but stop processing the remainder of the code in its body for this particular iteration. It skips the statements after the continue statement and rather then breaking out of the loop entirely carries on.

7.2 Create a new project and enter the code below which demonstrates how the continue keyword work:
	class ContinueDemo
{
 public static void main(String args[])
 {
 for (int i = 0; i < 10; i++)
 {
 // If the number is even
 // skip and continue
 if (i%2 == 0)
 continue;

 // If number is odd, print it
 System.out.print(i + " ");
 }
 }
}

Output:
1 3 5 7 9

The return statement is used to explicitly return from a method. That is, it causes a program control to transfer back to the caller of the method. Rather than just breaking out and cancelling a loop but carrying with the remaining statements like using the break keyword, this will bypass all remaining statements in the method. We’ll look at how we can return values to our methods in a later lesson.

7.3 For now create the following project which demonstrates how it works:

	// Java program to illustrate using return
class Return
{
 public static void main(String args[])
 {
 boolean t = true;
 System.out.println("Before the return.");

 if (t)
 return;

 // Compiler will bypass every statement
 // after return
 System.out.println("This won't execute.");
 }
}

7.4 Create a new project using the example code. This shows the use of both breaks and continues within nested loops:

	

public class BreakingOut {
		public static void main(String[] args)
		{
			for (int i = 1; i < 4; i++)
			{
				for (int j=1; j < 4 ; j++)
				{
					if(i == 1 && j == 1)
					{
						System.out.println("Continues innerLoop when i= " +i+ " j=" +j);
						continue;
					}
					if (i== 2 && j == 1)
					{
					System.out.println("Breaks innerLoop when i=" +i+ " j=" + j);
					break;//break out of inner loop
					}
					System.out.println("Running i="+i+" j="+j);
					
				}
		}
}
}

When completed, compile and run the program. You should get the output:
Continues innerLoop when i= 1 j=1
Running i=1 j=2
Running i=1 j=3
Breaks innerLoop when i=2 j=1
Running i=3 j=1
Running i=3 j=2
Running i=3 j=3

8. Returning control

The default behaviour of the break and continue keywords can be changed to explicitly specify that control should return to a labelled outer loop by stating its label name. The syntax to label a loop requires a label name, followed by a : colon character, to precede the start of the loop structure.

8.1 Create a new class using the example code:

	

class Label
{
	public static void main(String[] args)
	{	
		outerLoop: for (int i = 1; i < 4 ; i++)
		{
			for (int j = 1; j < 4 ; j++)
			{
				if (i == 2 && j == 3)
				{
	
					System.out.println("Breaks outerLoop when i=" +i+ " j=" +j) ;		
					break outerLoop; //Exit outer loop

				}

				if (i == 1 && j == 1)

				{
	
					System.out.println("Continues outerLoop when i=" +i+ " j=" +j) ;		
					continue outerLoop; //Proceed with outer loop

				}

				System.out.println("Running i=" +i+ " j="+j);
			}
		}
	}
}

When completed, compile and run the program. You should get the output:
Continues outerLoop when i=1 j=1
Running i=2 j=1
Running i=2 j=2
Breaks outerLoop when i=2 j=3

9. Adding to your Gallons to Liters program

You can use the for loop, the if statement, and code blocks to create an improved version of the gallons-to-liters converter that you developed in the first week. This new version will print a table of conversions, beginning with 1 gallon and ending at 100 gallons. After every 10 gallons, a blank line will be output. This is accomplished through the use of a variable called counter that counts the number of lines that have been output. Pay special attention to its use.

Create a new class called GalToLitTable.
	
public class GalToLitTable {
 public static void main(String[] args) {
 double gallons;
 double liters;
 int counter;

 counter = 0; //Line counter initially set to 0
 for(gallons = 1; gallons <= 100; gallons++) {
 liters = gallons * 3.7854;
 System.out.println(gallons + " gallons is " + liters + " liters.");

 counter++; //Increment the line counter with each loop iteration
 //Every 10th line, print a blank line
 if(counter == 10) {
 System.out.println();
 counter = 0; // reset number
 }
 }
 }
}

3 | Page	James Tedder

